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Abstract

By using the values and higher derivatives of a function at the given nodes, a kind of multi-
node higher order expansion of the function is presented. The error terms of the expansions
are given. Particular examples are the extensions of the Taylor polynomials, Bernstein
polynomials and Lagrange interpolation polynomials. The expansions are numerical
approximation polynomials and very useful particular for the functions for which the higher
derivatives can be obtained easily.
© 2003 Published by Elsevier Inc.
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1. Introduction

It is well known that the usual Bernstein polynomials are defined on the interval
[0, 1] as follows:

B =Y By (). )
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where B,;(x) = Cix'(1 — x)"~". In the book [4], it is shown that, if f € C¥[0, 1], r>1,
then

10 = B(fx) = =3 T2 4o 1), @)

Under the same conditions, the following asymptotic expansion can be found in [5]:

SELTHERIS

n

2r (x )
fO) = B(fx) ==Y TJ—P FOx)+0

J=1

s x(1—x) 1
xw(f(z), n+n>]’ (3)

where w( f,0) is the modulus of continuity of f.
In order to get (3), the following lemma is used.

Lemma 1.

x(1 —x) N
|]1n‘2r(x)|<MlT X(l—x)-F; )

x(1 —x) I
|Tn,2r+1(x)|<M2an x(1 —X)“‘Z )
where M\ and M, are independent of n and x.

For the Bernstein polynomials defined on a simplex, some error bounds and some
kind of asymptotic error expansion are given in [3]. Some asymptotic expansion
formulas are also discussed in [2].

The Bernstein polynomials are functional approximation polynomials using only
function values. If the higher derivatives of a function are used, we can expect a
higher order expansion similar to (2) or (3). The Taylor expansion is a common
expansion using higher derivatives of a function. However, it is worthwhile to discuss
how to properly use higher derivatives of a function to construct an expansion. In
this paper, using the values and higher derivatives of a function at the given nodes,
we construct higher order expansions of a function. The expansions are numerical
approximation polynomials and are obtained by using special properties of the
operator and a particular choice of the expansion coefficients.

The present paper is organized as follows. In Section 2, based on a class of
basis functions, a kind of higher order expansion and its error terms are shown. In
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Section 3, based on the Bernstein basis functions and the Lagrange basis functions,
the expansions and their error terms are shown. The comparisons of the errors of the
given cubic approximation polynomials and the cubic Hermite interpolation
polynomial are detailed.

2. Multi-node higher order expansions

Let

n

Lf,x) =S 0,(x) (x) (4)

i=0

be a linear operator in Cla,b], with the nodes a=xy<x<---<x,=5b and
@;€ Cla,b] chosen so that L reproduces all polynomials of degree <m. Then, in
particular,

n

> ex)(xi— 0" =(x—1)", xela,b], teR. (5)
i=0

This is equivalent to

L I, k=0
k_ 9 )
> o= = {1,

pary ey M.
Thus, replacing f(x;) in (4) by the Taylor expansion Z;:o (x— xi)’f<f> (x;)/j! gives an
operator which reproduces all polynomials of degree <max{m, r}, but this does not
reproduce all polynomials of degree <m + r. For that, as we will show, it suffices to

replace f(x;) in (4) by Y77 a;(x — xiVfU(x;)/f!, with

_rimA4r—j)! .
a; = CETICEL j=0,1,...,r (6)

In other words, we claim that, for this choice of the a;, the following multi-node
higher expansion

n r

Ho(f ) =Y o) Y %(x — XY (x) (7)

i=0 j=0 J°

reproduces all polynomials of degree <m +r.

Obviously, if we take m =0 and xp =x; = - = X, then (7) is the Taylor
expansion polynomial at one point due to Y ., ¢;(x) = 1.

For the analysis of H,,.(f,x), we need the following two lemmas concerning the a;.
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Lemma 2. Let k,m,r be nonnegative integers, p = min{k,r}, then

r

>ty T k). ®)

=0 Jik=)(r=nY k! o

Proof. Comparing the coefficients of x" on the two sides of the equality (1 +
X = (14 x) (1 +x)7"", we have
k—m—-1)k—-m—=2)---(k—m-—r)
rl
RS k! (—-m—-1)(-m—=2)--(—m—r+1)
‘;ﬂ(k—ﬂ!' (r=J)! '

From this we get (8). O

Lemma 3. Let k,m,r be nonnegative integers, p = min{k,r}, ag = 1. Then, for j =

1,2, ...,r, (6) are the unique solutions of the following linear equations:
?
Z 420, k=m+1, m+2,....m+r. 9)
= —J)!

Proof. From (8), we can deduce inductively that the coefficient matrix of (9) is
nonsingular. (8) also means that a; (j = 1,2, ...,r) given in (6) are the solutions of
the linear equations (9). O

Now we give the error terms of expansion (7).

Theorem 1. Let f(x)e C""a, b], x€[a,b], then for (7), we have

f(x) = Hy(f,x) = H,Z Kx—t)r(x,-—t)mf("’+"+l)(t)dt. (10)

Proof. For xe(a,b], by Taylor expansion, we have

=0
-3 Gix -y ’"i : (xi =) W (x)

R Pr— / (o — "IN (1) dy
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-3 [Z ]) ] (x = x) B (x)
k=0 | j=0

+ =) [l a,

= J'(m r —J)
where p = min{k, r}. By the restriction of ¢; and (9), we get

n r

H(f,x) =Y 00> %(x — XY (xi)

=0 7=0
1 n r /! )
:f(x) + W lz:(; (p,-(x) /z:(; ]'(V _j)!(x — xi)

« / ’(xi i t)m+z'7]f(m+r+1)(t) dt

) = gy i) [ G = 0 o
T =0 Xi

This means (10) holds. O

Theorem 2. Let f(x)e C"""a,b], xe[a,b], then for (7), we have

1
~(m+r)!

b
/ Ko (20, O)f (1) dt,

Proof. Since
[ Gt = e a
- /ux(x =) [(x = )" = (x; = )" (@) di
_ / (x = ) (xi = )" o),

(12)
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we have

n b )
S o) / (r — 1) (x = 1) — (i — 1)) 0) d
i=0 a

n

— A(x Xx— "(x; — )" D (1) dr. 13
0"’<)/x,( 1) (i — 1" £ (1) (13)

From (10) and (12), we get (11). O

Theorem 3. Let f'e C" " a, b], r=0, xe[a, b]. If K,(x, t) is of one sign in |a, b], then
when r is an even number,

(—l)mm'r' m+r+1 m+r+1
- H, s = i ’
100 = Hyf1) = o s Z(p (x—x)

(14)
Sfor some E€la, b, and when r is an odd number,
m!r!
- H,(f, =(-1"
/) (/,x) =(=1) (m+r)'(m+r+1)'
> m+1+1 Z (P m+r+1
+f(m+r+1)(£2) Z (Pi(x) (X _ xi)errJrl 7 (15)

i=k+1
where X € [xp, xk11], 0<k<n — 1, for some & €a, x], & €[x,b].

Proof. Since K,0(x, ) is of one sign in [, b], then K,,(x,7) = (x — 1) Ko (x, t) is of
one sign in [a,b] when r is an even number and K, (x, ) is of one sign in [a,x] or
[x,b] when r is an odd number. Therefore, when r is an even number, according to
(11), we have

1

f(t) - Hnr(fvx) = W

b
f(m+r+1)(£)/ Km,(x,t) dt

for some ¢€[a,b]. When r is an odd number, we have

S() = Hy(fx)

1

x b
Gl ™) [ Kol [ Koty a

for some ¢ €[a, x], & €[x, b].
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According to (13) for the special case £+ 1) (z) = 1, we have

b n RY
/ Kor(x,0)dt =Y ¢,(x) / (x —0) (x; — 1) dr
a i=0 Xi

’,n!r! m-r
= Gy 2

From this we get (14).
For x€[xg, xiq1], 0<k<n— 1, since

X b
[ Kuntvtyde= [ Konl0)x = 1)

the same formula (13), with the special case /" +1 (1) = (x — Z)g, immediately gives

¥ mlr! 5 m+r+1
‘/a' Kmr(xv t) dr = (_1) m+r+ ' Z (pz X xl .

i=

Then, we have

/Km,xtdt /Kmrxtdt /Kmrxt

m'r! 1
— (_l)m e (pi(x) (X _ xi)m+i+ .
e P

Thus, we get (15) immediately. [

3. On two special cases
3.1. The case of the Bernstein basis functions

In formula (7), we take uniform node sequence x; =a+ih, i=0,1,....,n, h =
(b — a)/n and the Bernstein basis functions as follows

x—ayi(b—x\""
Qoi(x):Bni(X):C,,(b_a) (b—a) , i=0,1,...,n

Then Y /' Bui(x) =1, Y1 Bui(x)(x — x;) = 0. Therefore, with m = 1, (7) for this
case can be written as follows

Hol 0 = B 3) g 30 P S B — ), (16)
=1 : i=0
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where B,(f,x) =>"", Bu(x)f(x;) is the Bernstein polynomial defined on [a,b].
Formula (16) is an extension of the Bernstein polynomial. For z€(a, b], since

Kl()(x l X - t Z Bm - l <0,

Theorem 3 is applicable for this case. As an illustration, we have the following.
Theorem 4. Let f(x)e C*a,b], x€a,b), xo = a, x; = b, then for (16) we have

/(%) = Hia(f, %) <ggalb — @)1 /], (17)
where || f¥|| = max,<c<p [ /9.

Proof. Let x =a+ (b —a)t, then 0<r<1. According to Theorem 3, with n =1,
m=1,r=2,xy=a, x; =b, and ¢;(x) = By;(x)(i = 0,1), we have

F) = Hia(f13) =~ () [Bro() (x — a)* + Buy()(x — b)Y,

3141
for some ¢ = &(x) €]a, b], therefore
/() = Hio( £, 1< 5(b — a)*(1 = 01 = 3(1 = 0] | /)
<sab—all/Y). O

Remark 1. H»(f,x) is a cubic polynomial. Comparing it with the cubic Hermite
interpolation polynomial Hj(f,x), which uses the same information about f,

namely f(a), " (a),f(b).f'(b), we have
£ (x) = H(f, )| <556 — a)* || f9]| = § > gaalb — @)*|| £ 9.
This means that Hi>(f, x) has a better error bound than H3(f, x).

Similar to the asymptotic expansion (3), we have the following results.

Theorem 5. Let xe[a,b], R(f,x) =f(x) — Hu(f,X), then when feC™*[a,b] and
r=1, we have
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When f e C"[a,b] and r=2, we have

glx—a)

R(f.x)|< B g)%:@ww+

w—@j%z

n

+
n n

prm’(x—@@—@ b—ﬂ7

where A and B are independent of n and x.

Proof. By the Taylor formula and (9), we have

r r

Z %(x —x YD () = Z %(x —x;)

j=0 =0

xlijwlﬁ( X))

k=

+ ﬁ(xi _ x)l”rlfjf(r-&-l) (éy)
1 /
=) = 5 = X )
- r+1—j aj X — x r+1
#3 C

j=
x (fU(Ey) = (x)),
where ¢;; is a number between x; and x. Therefore

R(f7 X) Zf(X) - Hnr(f> x)

x (ST (x) = (&)

When |x — x| < <x7”>n(b7x) 4 b=a

n

v“%wﬁwmﬁm<mo:wﬁmm “”@”+bﬁ.

n n

When |x — x;| > (’P”)(b*x) +b=
SO (x) = f(ED < oS Ix = xi)

1+M_MV/< ”+b;ﬁ]m0
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2n
< nx—a)b—x)+b—a e =slol)
2n
< [x = xilo().

\/n(x—a)(b—x) + (b —a)?

Let x=a+t(b—a), then 1€[0,1], x —x; = (b—a)(r—£). By Lemma 1 and
Hoélder inequality, we have

n 2 n
<Z Bi(x)|x — xi|r+l> < (Z Bi(x)(x — x;) ) (Z Bi(x)(x — x;) )
=0 =0

r—1
ngl(x_am_mwﬂ

n n
" (x —a)(b—x)

n

b

where M is independent of n and x. Therefore, for r>1, we have

ZB,,, |X—X,'+l<\/_¢[(x—a)(b—x)_i_(b_a)z] 2.

n“; n
Let
I = {i: Ix — xi| < (x—a)(b—x)_i_b_a}’
n n
IZ{iZ |x—xi|> (x_a)(b_x)er—a}'
n n
Sum up, we have
[R(f,X)]< : r L g () — x4 r 1
o e = S =J)! : l &7 =g SN =)
X Byi(x)]x — x| 2n o)
\/H(X—a)(b—x)+(b_a)2
T
z b= a)(b = x) (b—a)
(rJrl)!A1 = (x —a)(b—x)+ _ 0O,

where A4, is independent of » and x. The proof of (18) is completed. In the same way,
the proof of (19) can be completed. [
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3.2. The case of the Lagrange basis functions

In formula (7), we take

X — X
(x) =Li(x) = Lo i=0,1,...,n
o) =4 =TT L= =00
J#i

Hence, L(f,x) = L,(f,x), the Lagrange interpolation polynomial of degree <n,
well known to reproduce all polynomials of degree <n. Therefore, with m = n, (7)
for this case can be written as follows:

Ho(f,x) = L(f, )+ ]—, 35 (x = xiY D) (1) (20)
j=1 7" =0

Formula (20) is an extension of the Lagrange interpolation polynomial. Further,
K,(x,1) is of one sign (as a function of ¢) in [a, b] since it is the error at x of the
polynomial interpolant to (- — )", hence can be written (x — xo)(x — x1)---(x —
Xn)[X0, X1, ..., Xp, X](- — )", while, as a function of #, [xo, X1, ..., %, x](- — #)", is a B-
spline with knots Xx, x1, ..., X,,x, hence of one sign (see, e.g., [1]). Therefore,
Theorem 3 applies in this case. As an illustration, we have the following.

Theorem 6. Let f(x)e C*[a,b], xela,b], xo = a, x| = (a+ b)/2, x; = b, then for (20),
we have

£ (x) = Ha(f, )l <8800 — )L /P, (1)
where || f¥]| = maxa<x<p [ /).
Proof. We might as well let xe[xg,xi], x = x; +254%, —1<t<0. According to

Theorem 3, with n =2, m=2,r=1, xo =a, x; = (a+ b)/2, x, = b, and ¢,(x) =
Ii(x) (i=0,1,2), we have

f(x) = Hx(f,x) :%{fu)(él)lO(x)(x —a)*
4
+/W(&) |fl (x) <x - ; b> +h(x)(x — b)4] }7

for some &, €la, x|, & €]x, b], therefore

£ (%) = Hor(f, %) < (b — @) (2 = ) (2 + 38 + D[ /W]
< BB — )| /Y]] = %R0 — @)1 SY]].

In the same way, the proof of (21) can be completed when xe[x,x;]. O
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Remark 2. H,(f,x) is a cubic polynomial. Comparing it with the cubic Hermite
interpolation polynomial H3(f, x), we have

£ (x) = H3(f,%)|<54(b — a)*|| fW]] = 536 x SR(b — a)*| 9.

This means that H,;(f,x) has a better error bound than H3(f,x). On the other
hand, H»(f, x) uses more information about f than H3( f, x) does, namely the value
of f and of /" at (a + b)/2.

Acknowledgments

The author thanks referees for their valuable advice.

References

[1] H.B. Curry, 1.J. Schoenberg, On Pélya frequency functions. IV: the fundamental spline functions and
their limits, J. Appl. Math. 17 (1966) 71-107.

[2] Feng Yu Yu, J. Kozak, Asymptotic expansion formula for Bernstein polynomials defined on a
simplex, Constr. Approx. 8 (1992) 49-58.

[3] R.Q. Jia, Z.C. Wu, Bernstein polynomials defined on a simplex, Acta Math. Sinica 31 (4) (1988)
510-522.

[4] G.G. Lorentz, Bernstein Polynomials, University of Toronto Press, Toronto, Canada, 1953.

[5] W. Xiaochun, Note on Bernstein polynomials and Kantorovich polynomials, Approx. Theory Appl. 7
(2) (1991) 99-105.



	Multi-node higher order expansions of a function
	Introduction
	Multi-node higher order expansions
	On two special cases
	The case of the Bernstein basis functions
	The case of the Lagrange basis functions

	Acknowledgements
	References


